
Concepts for Safety-Inherent Model-Driven
Software Family Engineering and Product
Configuration in the Automotive Controller
Software Domain

Frank Grimm, Westsächsische Hochschule Zwickau (FH)

Automotive 2006, Stuttgart, 12th October 2006



Outline

Introduction
OMOS Software Development Process
OMOS Modelling Approach for Software Families

Product Configuration Problem

Problem Solution
Metamodel-based Approach
Formal Modeling Rules
Tool Support

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 2 of 20



OMOS Modelling Approach for Software Families

• OMOS = object-oriented modelling of software in the ECU
domain

• Bosch uses OMOS to create ECU software for automatic
gearboxes

• OMOS is a visual, model-driven technique

• UML class models used to model the architecture ECU
software systems

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 3 of 20



Software Product Families

• Set of software systems sharing a common set of features
that satisfy specific needs of a particular market segment

→ Various product variants can be derived from the basic
product family

Need for product family

• Gearbox software is developed for 5 different manufacturers

• Large diversity of customer requirements

→ Delivered systems are different in the implementation, but
share common functionalities and architecture

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 4 of 20



OMOS Software Development Process

C Code

B

OMOS Model

B2

A

A1 B1

Product 
Configuration

B

B2

A

A1 B1

C Code Generation

ECU Binary

Instance creation,
Communicating instances,
Initial Attribute Values

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 5 of 20



Creating Software Product Families with OMOS

• Base classes represent functionalities of an ECU software
system

→ Base class introduces functionality (variation point)

• Sub-classes represent variations of particular functionality

→ Sub-classes used to realize requirements of different
customers on the same functionality

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 6 of 20



Software Product Families
Example

 

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 7 of 20



Software Product Configuration

• OMOS model contains all variants

→ All products are based on the same model

• Product configuration = selecting the proper variants that
fulfil customer’s requirements of a specific project

Anti Slipping Regulation (ASR) – Example

• Variants: ASRAxle, ASRWheel and ControllerWithASR

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 8 of 20



Product Configuration Problem

• Analysed sub-system: 300 classes, 100 functionalities
(variation points), 2 to 5 variants per variation point

• Selecting proper combination of variants for a certain
product is error-prone

• Knowledge about dependent variants is currently not
explicitly included in models

→ Dependency solving solely based on the knowledge of
software engineers who have to be aware of implicit
dependencies between variants

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 9 of 20



Types of Configuration Errors

• Dependencies between variations that are not directly related
e. g., ASRAxle requires ControllerWithASR

→ Behaviour of particular variant implicitly depends on other
variant’s behaviour

• Variations that are directly related
e. g., Controller explicitly depends on Wheel

→ Selecting wrong sub-class cannot be prevented
e. g., ControllerWithASR requires ASRWheel

• Majority of errors results from combining variants which
implement different behaviour than the required variants

→ Result: undefined run-time behaviour

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 10 of 20



Product Configuration Problem

• Guarantee that delivered product fulfils customer’s
requirements

• Reliable product configuration process

→ Reducing ambiguity during configuration

→ Restricting the combination of variants using explicit
dependencies

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 11 of 20



Solving the Configuration Problems

• Variants refine inherited aggregations and associations

 Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 12 of 20



Solving the Configuration Problems

• Implicitly related variations become explicit

 Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 13 of 20



Metamodel for OMOS Models

 

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 14 of 20



Configuration Metamodel

 

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 15 of 20



Domain-specific Metamodelling Approach

• Domain-specific metamodels
• Modelling rules
• Tool support

Advantages

• Metamodel describes concepts of ECU software engineering
domain
→ understood by domain experts

• Both metamodels are considerably smaller than UML
metamodel

• Mapping between UML metamodel of conventional UML
CASE tools and domain-metamodel possible

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 16 of 20



Defining formal Modelling Rules

• Rules describe, constrain and verify usage of model elements

• Rules are based on domain-specific metamodel elements

• Common Object Constraint Language (OCL) used to
describe rules

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 17 of 20



Tool Support

• In-place checking

– Include meta-models and rules engine into CASE tool
→ Errors can be detected early during the modelling phase

• External checking

– Extract model information and verify models (before
product configuration) and configurations

→ Checker is independent of CASE tool

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 18 of 20



Conclusion

• Product configuration problem of software families

• Metamodel-based solution allows for explicit modelling and
management of dependencies between variants

• Modelling rules for reliable configurations

• Tools to verify rules

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 19 of 20



Thank you for your attention!

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 20 of 20


	Introduction
	OMOS Software Development Process
	OMOS Modelling Approach for Software Families

	Product Configuration Problem
	Problem Solution
	Metamodel-based Approach
	Formal Modeling Rules
	Tool Support


