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OMOS Modelling Approach for Software Families

• OMOS = object-oriented modelling of software in the ECU
domain

• Bosch uses OMOS to create ECU software for automatic
gearboxes

• OMOS is a visual, model-driven technique

• UML class models used to model the architecture ECU
software systems
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Software Product Families

• Set of software systems sharing a common set of features
that satisfy specific needs of a particular market segment

→ Various product variants can be derived from the basic
product family

Need for product family

• Gearbox software is developed for 5 different manufacturers

• Large diversity of customer requirements

→ Delivered systems are different in the implementation, but
share common functionalities and architecture
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OMOS Software Development Process
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Creating Software Product Families with OMOS

• Base classes represent functionalities of an ECU software
system

→ Base class introduces functionality (variation point)

• Sub-classes represent variations of particular functionality

→ Sub-classes used to realize requirements of different
customers on the same functionality
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Software Product Families
Example
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Software Product Configuration

• OMOS model contains all variants

→ All products are based on the same model

• Product configuration = selecting the proper variants that
fulfil customer’s requirements of a specific project

Anti Slipping Regulation (ASR) – Example

• Variants: ASRAxle, ASRWheel and ControllerWithASR
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Product Configuration Problem

• Analysed sub-system: 300 classes, 100 functionalities
(variation points), 2 to 5 variants per variation point

• Selecting proper combination of variants for a certain
product is error-prone

• Knowledge about dependent variants is currently not
explicitly included in models

→ Dependency solving solely based on the knowledge of
software engineers who have to be aware of implicit
dependencies between variants
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Types of Configuration Errors

• Dependencies between variations that are not directly related
e. g., ASRAxle requires ControllerWithASR

→ Behaviour of particular variant implicitly depends on other
variant’s behaviour

• Variations that are directly related
e. g., Controller explicitly depends on Wheel

→ Selecting wrong sub-class cannot be prevented
e. g., ControllerWithASR requires ASRWheel

• Majority of errors results from combining variants which
implement different behaviour than the required variants

→ Result: undefined run-time behaviour
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Product Configuration Problem

• Guarantee that delivered product fulfils customer’s
requirements

• Reliable product configuration process

→ Reducing ambiguity during configuration

→ Restricting the combination of variants using explicit
dependencies
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Solving the Configuration Problems

• Variants refine inherited aggregations and associations
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Solving the Configuration Problems

• Implicitly related variations become explicit
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Metamodel for OMOS Models
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Configuration Metamodel
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Domain-specific Metamodelling Approach

• Domain-specific metamodels
• Modelling rules
• Tool support

Advantages

• Metamodel describes concepts of ECU software engineering
domain
→ understood by domain experts

• Both metamodels are considerably smaller than UML
metamodel

• Mapping between UML metamodel of conventional UML
CASE tools and domain-metamodel possible
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Defining formal Modelling Rules

• Rules describe, constrain and verify usage of model elements

• Rules are based on domain-specific metamodel elements

• Common Object Constraint Language (OCL) used to
describe rules
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Tool Support

• In-place checking

– Include meta-models and rules engine into CASE tool
→ Errors can be detected early during the modelling phase

• External checking

– Extract model information and verify models (before
product configuration) and configurations

→ Checker is independent of CASE tool

Concepts for Safety-Inherent Model-Driven Software Family Engineering
and Product Configuration in the Automotive Controller Software Domain slide 18 of 20



Conclusion

• Product configuration problem of software families

• Metamodel-based solution allows for explicit modelling and
management of dependencies between variants

• Modelling rules for reliable configurations

• Tools to verify rules
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Thank you for your attention!
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